行业资讯

利用Python预测NBA比赛结果

作者:佚名 发布时间:2024-08-12 点击:

关注「实验楼」,每天分享一个项目教程   

NBA总决赛正在火热上演,而有数据的地方就有预测,本教程就教你使用Python预测NBA比赛的结果。

正文共:3240 字 

预计阅读时间:8 分钟?

1.1 内容简介

不知道你是否朋友圈被刷屏过nba的某场比赛进度或者结果?或者你就是一个nba狂热粉,比赛中的每个进球,抢断或是逆转压哨球都能让你热血沸腾。除去观赏精彩的比赛过程,我们也同样好奇比赛的结果会是如何。因此本节课程,将给同学们展示如何使用nba比赛的以往统计数据,判断每个球队的战斗力,及预测某场比赛中的结果。

我们将基于2015-2016年的NBA常规赛及季后赛的比赛统计数据,预测在当下正在进行的2016-2017常规赛每场赛事的结果。

640?wx_fmt=png

1.2 实验知识点

  • nba球队的计算

  • 特征向量

  • 逻辑回归

1.3 实验环境

  • python2.7

  • Xfce终端

1.4 实验流程

本次课程我们将按照下面的流程实现NBA比赛数据分析的任务:

  1. 获取比赛统计数据

  2. 比赛数据分析,得到代表每场比赛每支队伍状态的特征表达

  3. 利用**机器学习**方法学习每场比赛与胜利队伍的关系,并对2016-2017的比赛进行预测

1.5 代码获取

本次实验的源码可通过以下命令获得:

$ wget http://labfile.oss.aliyuncs.com/courses/782/prediction.py

2.1 比赛数据介绍

在本次实验中,我们将采用Basketball Reference.com中的统计数据。在这个网站中,你可以看到不同球员、队伍、赛季和联盟比赛的基本统计数据,如得分,犯规次数等情况,胜负次数等情况。而我们在这里将会使用2015-16 NBA Season Summary中数据。

640?wx_fmt=png

在这个2015-16总结的所有表格中,我们将使用的是以下三个数据表格:

  • Team Per Game Stats:每支队伍平均每场比赛的表现统计

| 数据名 | 含义 || ------------------------------------ | -------------- || Rk -- Rank | 排名 || G -- Games | 参与的比赛场数(都为82场) || MP -- Minutes Played | 平均每场比赛进行的时间 || FG--Field Goals | 投球命中次数 || FGA--Field Goal Attempts | 投射次数 || FG%--Field Goal Percentage | 投球命中次数 || 3P--3-Point Field Goals | 三分球命中次数 || 3PA--3-Point Field Goal Attempts | 三分球投射次数 || 3P%--3-Point Field Goal Percentage | 三分球命中率 || 2P--2-Point Field Goals | 二分球命中次数 || 2PA--2-point Field Goal Attempts | 二分球投射次数 || 2P%--2-Point Field Goal Percentage | 二分球命中率 || FT--Free Throws | 罚球命中次数 || FTA--Free Throw Attempts | 罚球投射次数 || FT%--Free Throw Percentage | 罚球命中率 || ORB--Offensive Rebounds | 进攻篮板球 || DRB--Defensive Rebounds | 防守篮板球 || TRB--Total Rebounds | 篮板球总数 || AST--Assists | 助攻 || STL--Steals | 抢断 || BLK -- Blocks | 封盖 || TOV -- Turnovers | 失误 || PF -- Personal Fouls | 个犯 || PTS -- Points | 得分 |

  • Opponent Per Game Stats:所遇到的对手平均每场比赛的统计信息,所包含的统计数据与Team Per Game Stats中的一致,只是代表的该球队对应的对手的

  • Miscellaneous Stats:综合统计数据

数据项 数据含义
Rk (Rank) 排名
Age 队员的平均年龄
W (Wins) 胜利次数
L (Losses) 失败次数
PW (Pythagorean wins) 基于毕达哥拉斯理论计算的赢的概率
PL (Pythagorean losses) 基于毕达哥拉斯理论计算的输的概率
MOV (Margin of Victory) 赢球次数的平均间隔
SOS (Strength of Schedule) 用以评判对手选择与其球队或是其他球队的难易程度对比,0为平均线,可以为正负数
SRS (Simple Rating System) 3
ORtg (Offensive Rating) 每100个比赛回合中的进攻比例
DRtg (Defensive Rating) 每100个比赛回合中的防守比例
Pace (Pace Factor) 每48分钟内大概会进行多少个回合
FTr (Free Throw Attempt Rate) 罚球次数所占投射次数的比例
3PAr (3-Point Attempt Rate) 三分球投射占投射次数的比例
TS% (True Shooting Percentage) 二分球、三分球和罚球的总共命中率
eFG% (Effective Field Goal Percentage) 有效的投射百分比(含二分球、三分球)
TOV% (Turnover Percentage) 每100场比赛中失误的比例
ORB% (Offensive Rebound Percentage) 球队中平均每个人的进攻篮板的比例
FT/FGA 罚球所占投射的比例
eFG% (Opponent Effective Field Goal Percentage) 对手投射命中比例
TOV% (Opponent Turnover Percentage) 对手的失误比例
DRB% (Defensive Rebound Percentage) 球队平均每个球员的防守篮板比例
FT/FGA (Opponent Free Throws Per Field Goal Attempt) 对手的罚球次数占投射次数的比例

毕达哥拉斯定律:640?wx_fmt=png

我们将用这三个表格来评估球队过去的战斗力,另外还需2015-16 NBA Schedule and Results中的2015~2016年的nba常规赛及季后赛的每场比赛的比赛数据,用以评估(在之后的实验小节中解释)。在中按照从常规赛至季后赛的时间。列出了2015年10月份至2016年6月份的每场比赛的比赛情况。

640?wx_fmt=png

可在上图中,看到2015年10月份的部分比赛数据。在每个*Schedule*表格中所包含的数据为:

数据项 数据含义
Date
推荐资讯
推荐产品

平台注册入口